VIMS®™

Operations, engineers and management are integrated through a one stop shop for anything valve integrity
Table of Content

- **Typical Challenges**
- **Valve-IMS ™ and VIMS ™**
- **Product Modules**
- **Product Demo**
- **Product Deployment and Packages**
- **Typical Implementation Process**
- **Case Study**
- **FAQs**
Typical Challenges

Lack of Knowledge
- Valves – historically, poor management and integrity of valves and lack of data or traceability

Lack of Monitoring
- There is no monitoring process which effectively connects the front end users of equipment (valves and pigs) to the back-end team in an automated and meticulous way.

Lack of Expertise
- Due to the lack of historical information and transfer of knowledge, teams make the same mistakes as they fail to build on historical events, experience or statistics.

Cost of Operation
- Increased costs through unknown failure prediction, unplanned shutdown and events
- Increased and unnecessary man-hour spend on carrying out inspections and repairs
Existing Alternatives

Vintage

Engineering firms services

- Providing ad-hoc services, including periodic review of data and reporting to client. This is typically a very expensive and slow (time-consuming) solution

CMMS

Computerised Maintenance Management Systems

- Generic maintenance management software established within companies for managing their systems, however lacks the interactive capability of a bespoke system

Specific Software

Other software solutions

- Valves – solutions are mainly reactive with no real integration to front-end activity
Valve-IMS ®™ and VIMS ®™

The VIMS Process®™
Solution

Focus on creating value through continuous improvement and development of technologies and tools which improve the current practices.

Create software solutions to integrate front-end operation demand directly with back-end engineering and decision making.

<table>
<thead>
<tr>
<th>Process Integration</th>
<th>Reduce Failures</th>
<th>Save Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Front-end input tool</td>
<td>• Assisted engineering</td>
<td>• Man hour saving</td>
</tr>
<tr>
<td>• Creating an automated feedback loop</td>
<td>• Provision of algorithms for decision making</td>
<td>• Reduced maintenance cost</td>
</tr>
<tr>
<td>• Notification to back-end team</td>
<td>• Development of highlights and indicators</td>
<td>• Reduction in unplanned failures / shutdown</td>
</tr>
<tr>
<td>• Immediate response and analysis</td>
<td>• Failure prediction and monitoring</td>
<td></td>
</tr>
</tbody>
</table>

Process Integration

- Front-end input tool
- Creating an automated feedback loop
- Notification to back-end team
- Immediate response and analysis

Reduce Failures

- Assisted engineering
- Provision of algorithms for decision making
- Development of highlights and indicators
- Failure prediction and monitoring

Save Costs

- Man hour saving
- Reduced maintenance cost
- Reduction in unplanned failures / shutdown
Valve-IMS®™

Risk Management
Likelihood, Consequence, Risk ranking, Risk profiling

Operational Excellence
Technician Interface, PM link, Calendar support

Compliance Support
Company policies, Country policies

As-built Warehouse
OEM data, Maintenance manuals, File deposit

Miscellaneous & New Valve Support
Pigging information, Anomalies, New valve / valve repair selection support

Reliability Engineering
MTTF / MTTR, Common mode failure, availability, regional/global/industry statistics

Trending
Leak rate, Strokes, Closure time, Failures

Periodic Assessment
Yearly integrity review, Periodic failure statistics, Incident investigation
Functional Process

Input data
- Analyses / setting limits
- Inspections
- Monitoring
- Observations

Condition Evaluation
- Operating req. & limits
- Inspection results
- Indication results
- Events / History

Valve condition evaluations (sections and components)

Action plans
- Activities plan
- Inspection plan
- Risk management
- Spares register & EPRS

Responsibilities and process establishment
- Implementatio n of recommended plan
- VIMS Confidence Process
- Monitoring and data gathering
- Reliability engineering review and recommendations
- Data handling and analysis
- Failure analysis OR data manipulation
- OR data manipulation
Integrity Management Provisions

- Defined valve integrity management process
- Visible and easy to interpret leading and lagging indicators
- Activity manager linked with PMs, actions and inspection frequencies
- Elimination of human error
- Established method of complying with performance standards
- Defined method of executing and recording RCA
- Review / development of testing volumes and maximum normal operating pressures
- Emergency repair preparedness development

- Holistic view of valve integrity
- Removal of paper based reporting, inclusion of quality control and assurance
- Common mode failure analysis (from global, to regional, to valve, to component level)
- Yearly maintenance regime review
- Performance indicators
- Risk management and reduction
- Reduce downtime and interventions
- Training and competencies support / management
Benefits

- Quantitative and qualitative risk assessment
- Failure mode analysis and review
- Independent valve integrity assessment including failure cause review
- Savings on man hours
- Significant savings on lost revenue from unplanned SD – up to 75%
- Live monitoring and failure mode feed
- Quality control and assurance on valves
- Reduction in the occurrence of serious incidents
- Continuous valve integrity monitoring
- New valve / replacement / repair support
- Stringent control of valve integrity, maintenance and operational activities
- Integration with CMMS: Direct feed to and from CMMS such as Maximo, aggressor etc.
- Instant feedback on any form of maintenance or failures carried out
- Risk ranking and prioritization of valves based on regulatory requirements and company engineering technical practices
- Document and as-built storage
- Incorporates standard operating procedures (SOPs) Modifiable dashboard to suit the user’s requirement i.e. highlighting important KPIs such as MTBF, ORAs, reliability, etc.
Product Modules
As-built Warehouse

- Valve information and datasheet print
- Details of OEM requirements
- Details of operational activities
- Documentation of as-built
- Highlight of incidents
- Indication of last and future test
- QR tagging system
- Details of changes to valve i.e. repairs, replacement, overhaul etc.
Operational Excellence

•7 reports available (Inspection, RCA, incidents, repairs, IVB, pigging and actions)

•Supervisory level reviews report (e.g. OIM, OTL, etc)
•Once reviewed, report cannot be modified

•Once reviewed, the report is further reviewed by the responsible engineer. It can then either be accepted or queried

•A queried report gets pushed back to the supervisor
•Once queried, information in the report can be changed

•Once the query is answered or if there is no query, a report can be accepted. Only accepted report influences analysis and trending.
Operational and Maintenance Support

- Review / development of standard operational testing procedures
- Emergency breakdown response
- Routine maintenance during scheduled shutdown
- Valve tagging and identification
- Maintenance system support (e.g. Maximo, credo etc.)
- Valve preventative maintenance
 - actuator preventative maintenance
 - visual
 - partial/stroke test
 - leak off testing
 - greasing / oil level checks
 - valve annulus testing ... etc.

- Enquiry logging and support request interface
- Development of and adhering to valve maintenance strategy
- Root cause investigation, diagnostics, repairs and reporting
- Reconditioning and servicing
- Valve stock / spares management including spares assessment and obsolescence review.
- Component replacement cycle review
- Development of performance standards for valves which falls under SCE
- Historical performance analysis and benchmarking
Compliance Support

- Risk assessment is designed to suit specific client’s processes and policies
- Algorithms considers the location (country, region, etc.) and respective compliance scores associated with the region
- Reporting requires compliance to certain standards and processes depending on the type of valve / equipment
- Software supports activity planning and record management
- Software supports independent verification and company audit processes through the IVB reporting templates
- Increasingly smart system that can integrate with maintenance plans and KPIs
Risk Management

• Provides a risk matrix based on client’s matrix and criteria
 • Can be fed directly to company’s risk matrix or register
 • Allows for holistic understanding of long term risks
 • Risk matrix designed to be compliant with company’s local and global policies

• Provides a health check to enable prioritisation of inspection activities
 • Allows prioritisation of activities
 • Highlights areas of immediate concern
 • Allows for holistic understanding of short-term risks
 • Health check considers operational activities required to maintain the valve in a good condition and highlights / observations from inspection activities
Reliability Engineering

- Indicators tailored to support day to day operation
 - MTBF
 - Different availability assessment methods
 - Highlights (activities planned vs actuals)
 - Failure mode analysis
 - Trending
 - Asset highlights from IVB

- Improved integrity management through one stop shop holistic picture

- Highlights
 - Inspection
 - Performance standards
 - Process
 - Standards
 - Etc.
Failure Mode Support Engineering

- Failure mode classification
 - Over 91 failure modes
 - Inadequate maintenance
 - Design inadequacy
 - Inexperienced staff
 - Corrosion
 - QA issue
 - etc.

- Incident category
 - Dangerous occurrence
 - Covered by risk assessment
 - Other safety related
 - Non-safety related
 - Company-HIGH, MID, LOW
 - etc.

- Re-emphasis
- Actions
- Failed component
 - stem
 - body
 - etc.
Trending and Periodic Assessment

- Failure trending and analysis
- Time to close trending
- Leak rate trending
- Test pressure trending
- Reliability and availability trending
- PDF reports generation
- Support the asset integrity yearly review activities
Miscellaneous

- Activity manager
- Pipeline valve bore management
- Availability analysis
- Root cause analysis
- Independent verification visit management
- Action management
- Software integration with CMMS
- Repair management
- Spares and obsolescence
Product Demo

The prototype
Demo Deployment

• Product demo consists of;
 • Web interface and access to all valves
 • Ability to input information and review information on valves
 • Ability to review valve reliability and availability
 • Ability to review valve trends
• Demo installation takes 2 weeks for an asset of 20 valves and 100 – 250 historical verifiable reports
• Maximum number of users 4
• Demo duration is 3 months
Product Deployment and Packages

The full package
Package Options

- Basic Package;
- Reliability Package
- Offshore Package
- Integrated / Bespoke Package

- Basic Package
 - Web interface and dashboard
 - Background (location, platforms, lines, assets, valves)
 - Reports (inspection, incidents, IVB, RCA, repairs, miscellaneous, actions)
 - Trending (leak rate, closure, test pressure)

- Reliability Package
 - Basic package
 - Risk manager (risk graph, health check, risk table)
 - Failure mode packages
 - Activity manager
Package Options

• Offshore Package
 • Basic package
 • Reliability package
 • Operation handheld device
 • QR coding of all valves

• Integrated / Bespoke Package
 • Installation of acoustic measuring devices for automated records
 • Integration of Valve-IMS with CMMS
 • Integration of Valve-IMS with telemetry / SCADA systems
 • Additional request of client can be considered
Typical Implementation Process
Software Embedment Process

Valve-IMS
- Issue of users
- Assign of client focal point

VIMS™®
- Development of valve integrity guideline document (if required)
- Establishing of roles and responsibilities (if required)
- Update of performance standards (if required)

VIMS™® Procedures
- Development of Valve-IMS asset manual (if required)
- Establish inspection test boundaries and required tests (if required)
- Development of test operating procedures (if required)

Auxiliaries
- RCA
- Valve design assurance (if required)
- Yearly valve integrity report draft
- Regulator report support
- Period VIMS data-book

Company & Location
- Risk factors
- Company policy
- Regional policy
- OREDA data (if available)

Establishing assets & gaps
- Platforms & pipelines
- Users
- Valves

Information gathering
- As-built
- Inspection
- Maintenance
- Incidents
- Repairs
- IVB
- RCA

Integration
- Data synchronization
- Operations training
- Engineers training
- Management training
Theoretical System Description

- System type: Pipeline
- 15 platforms
- 3 terminals
- 3 landline, 20 pipeline systems
- Between 5 – 30 years of operation
- Oil and condensate pipeline systems
- Pipeline integrity system exists

- No valve integrity management system
- Lack of traceability on inspection and repairs
- Several ESDV failures
- Lack of as-built and knowledge on valves
- Reactive maintenance resulting in high maintenance costs
- Lack of indicators
Approach

• Phase I - data gathering and survey
• Phase II - establishing valve condition, development of procedures, development of PMs, development of test volumes, MNOP etc. execution of maintenance plan
• Phase III - Incorporation of Valve-IMS on the valve systems
• Phase IV - Training of client personnel as required
Phase I

Activities

• Carried out an initial survey to understand what the current status of the valves are

• Create a central repository for all information related to valves, valve associated devices and equipment

• A status summary of all RESDVs on the COMPANY’s platforms including information such as visual defects and status of all associated components on the valve

Outcome

• Comprehensive list of all ESDVs on the platform including OEM’s details

• Comprehensive status summary of all RESDVs on the platform from visual inspection indicators

• KPIs development

• Execution plan for Phase II and Phase III
Phase II

Activities

• Valve Integrity Management System (VIMS) and Standard Operating Procedure (SOP) documentations that detailed the isolation points, highlights on P&IDs, MNOP, operating restrictions and communication protocols.

• Typical critical valves have a set of minimum inspections carried out on an approved frequency.

• These inspections are usually done to comply and in conformance to the requirements of either the operator or the regulator

Outcome

• Detailed listing of all ESDVs on the platforms, down to component design details

• Integrated VIMS process for the operator

• Intercompany Valve integrity management system and process

• SOP documentation for all the operator’s ESDV

• Maintenance plans and PMS for all ESDV inspections
Phase II – Typical Inspections

<table>
<thead>
<tr>
<th>Inspection Type</th>
<th>Typical Frequency (regulation)</th>
<th>Brief Content</th>
<th>TAR Required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual Inspection</td>
<td>1 - 3 monthly</td>
<td>Main goal is to confirm mainly valve corrosion deteriorating mechanisms, PM for associated components and supporting systems are under control.</td>
<td>No S/D required</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Actuator</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Valve general condition</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Associated controls and panels</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Integrity protection checks</td>
<td></td>
</tr>
<tr>
<td>Partial Closure</td>
<td>3 - 6 monthly</td>
<td>The main function is to confirm telemetry and valve response</td>
<td>No S/D required</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Visual inspection</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- ESD pre-checks</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Telemetry checks</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- ESDV motion checks</td>
<td></td>
</tr>
</tbody>
</table>

Full Closure
- 6 - 24 monthly
- The main function is to confirm telemetry and valve response in compliance with the performance standards and the platform safety case:
 - Partial closure
 - Observation of noise
 - Recording of time to close and open
 - Time to actuate vs time to close

Leak Tests
- 6 - 36 monthly
- The main function is to confirm telemetry and valve response in compliance with the performance standards and the platform safety case:
 - Full closure
 - Leak rate through valve
 - Consideration and care to prevent over pressure
 - Staged build up and monitoring

PIMS
Valve-IMS

VIMSTM®
Phase III (15 – 30 days)

- Integration of Valve-IMS with the operator’s Computerised Maintenance Management System (CMMS)
- Holistic view on the status of all ESDVs and a forward plan
- Proactive valve management
- Reduced failures through leading and lagging indicators
Typical Schedule

<table>
<thead>
<tr>
<th>Task Name</th>
<th>Duration</th>
<th>Start</th>
<th>Finish</th>
<th>Predecessors</th>
<th>Resource Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operations and Maintenance Valve Schedule</td>
<td>133.36 days</td>
<td>Wed 01/05/17</td>
<td>Mon 01/06/17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kick off</td>
<td>11 days</td>
<td>Wed 01/05/17</td>
<td>Wed 15/03/17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kick off meeting with COMPANY</td>
<td>1 day</td>
<td>Wed 21/03/17</td>
<td>Wed 01/04/17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provision of technical plan to COMPANY for approval</td>
<td>5 days</td>
<td>Thu 02/04/17</td>
<td>Wed 08/04/17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offshore and site approvals</td>
<td>5 days</td>
<td>Thu 09/04/17</td>
<td>Wed 15/04/17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data gathering</td>
<td>10 days</td>
<td>Wed 01/05/17</td>
<td>Tue 14/03/17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase I</td>
<td>39.36 days</td>
<td>Thu 15/03/17</td>
<td>Wed 08/04/17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mobilization of personnel</td>
<td>7 days</td>
<td>Thu 15/03/17</td>
<td>Fri 24/03/17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offshore inspection</td>
<td>14.36 days</td>
<td>Mon 27/03/17</td>
<td>Fri 24/04/17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inspection steps</td>
<td>0.56 days</td>
<td>Mon 27/03/17</td>
<td>Mon 03/04/17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Completion of other platform inspections</td>
<td>14 days</td>
<td>Mon 03/04/17</td>
<td>Fri 14/04/17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical assessment</td>
<td>23 days</td>
<td>Fri 14/04/17</td>
<td>Fri 12/05/17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical assessment and condition report</td>
<td>20 days</td>
<td>Fri 14/04/17</td>
<td>Fri 21/05/17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance and operational procedures</td>
<td>38 days</td>
<td>Fri 14/04/17</td>
<td>Wed 04/05/17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planning for phase 1</td>
<td>5 days</td>
<td>Fri 14/04/17</td>
<td>Fri 25/05/17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase II</td>
<td>67 days</td>
<td>Wed 21/04/17</td>
<td>Fri 08/06/17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPANY VIMS process establishment</td>
<td>37 days</td>
<td>Wed 21/04/17</td>
<td>Fri 10/06/17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance planning</td>
<td>57 days</td>
<td>Wed 21/04/17</td>
<td>Fri 08/06/17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESDVs rectification program (not included in plan)</td>
<td>9 days</td>
<td>Wed 21/04/17</td>
<td>Wed 07/06/17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase III</td>
<td>15 days</td>
<td>Fri 08/09/17</td>
<td>Fri 30/09/17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Case Study
Valve Failure Review
Using Leading and Lagging Indicators

- Tag: valve1
- Installed: 2005
- Operational years: 7 yrs.
- Value of production: 8,000.00 bbl./day
- Value of production (per barrel, per day): 8,000.00 bbl./day, 20 USD/bbl.
- Number of significant failure(s): 1
- 1 failure resulting in a cost of over 700,000 USD
- Several leading and lagging indicators not picked up
Using Leading and Lagging Indicators

• Events not picked up or thoroughly assessed without VIMS
 • Number of silent indicators: 10 +
 • Number of active indicators: 2 (failed PS tests)
 • Number of failed tests: 3

• Significant failure resulting in outage
 • Number of significant failure(s): 1
 • Days lost from significant failure(s): 10

• VIMS process visualizations
 • Corrosion indicators: 3
 • Ingress / grating indicators: 5
 • Speed restriction / slow activation indicators: 2
 • HSE highlighted 2 historical performance standards issue before final failure
 • Highlights: 2
Health Checks and Risk Review

Health Check

<table>
<thead>
<tr>
<th>Valve</th>
<th>Category</th>
<th>Health Score</th>
<th>Health Rank</th>
<th>Deficiency Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valve 1</td>
<td>1.32E-05</td>
<td>96.55%</td>
<td>66.00</td>
<td>36.00</td>
</tr>
<tr>
<td>Valve 2</td>
<td>5.10E-02</td>
<td>95.84%</td>
<td>64.00</td>
<td>35.00</td>
</tr>
<tr>
<td>Valve 3</td>
<td>1.37E-04</td>
<td>95.92%</td>
<td>65.00</td>
<td>36.00</td>
</tr>
<tr>
<td>Valve 4</td>
<td>4.29E-01</td>
<td>95.37%</td>
<td>64.00</td>
<td>35.00</td>
</tr>
<tr>
<td>Valve 5</td>
<td>3.50E-01</td>
<td>96.00%</td>
<td>66.00</td>
<td>36.00</td>
</tr>
<tr>
<td>Valve 6</td>
<td>5.00E+00</td>
<td>95.00%</td>
<td>65.00</td>
<td>35.00</td>
</tr>
<tr>
<td>Valve 7</td>
<td>2.00E+00</td>
<td>94.90%</td>
<td>64.00</td>
<td>35.00</td>
</tr>
<tr>
<td>Valve 8</td>
<td>2.00E+00</td>
<td>96.26%</td>
<td>66.00</td>
<td>36.00</td>
</tr>
<tr>
<td>Valve 9</td>
<td>5.00E+00</td>
<td>96.55%</td>
<td>66.00</td>
<td>36.00</td>
</tr>
</tbody>
</table>

Risk and Quantitative Assessment

Factors

<table>
<thead>
<tr>
<th>Factor</th>
<th>Category</th>
<th>Component</th>
<th>Region</th>
<th>OEM</th>
<th>Sector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valve 1</td>
<td>4.66E-07</td>
<td>9.00E-07</td>
<td>2.00E+00</td>
<td>1.00E-01</td>
<td>3.88E-02</td>
</tr>
<tr>
<td>Valve 2</td>
<td>2.19E-03</td>
<td>9.52E-02</td>
<td>2.00E+00</td>
<td>1.00E-01</td>
<td>2.47E-02</td>
</tr>
<tr>
<td>Valve 3</td>
<td>4.11E-03</td>
<td>9.52E-02</td>
<td>2.00E+00</td>
<td>1.00E-01</td>
<td>2.47E-02</td>
</tr>
<tr>
<td>Valve 4</td>
<td>1.33E-01</td>
<td>6.16E-03</td>
<td>16.00</td>
<td>1.00E-01</td>
<td>1.00E-01</td>
</tr>
<tr>
<td>Valve 5</td>
<td>2.05E-03</td>
<td>9.04E-03</td>
<td>34.00</td>
<td>1.00E-01</td>
<td>1.00E-01</td>
</tr>
<tr>
<td>Valve 6</td>
<td>2.05E-03</td>
<td>9.04E-03</td>
<td>34.00</td>
<td>1.00E-01</td>
<td>1.00E-01</td>
</tr>
<tr>
<td>Valve 7</td>
<td>2.05E-03</td>
<td>9.04E-03</td>
<td>34.00</td>
<td>1.00E-01</td>
<td>1.00E-01</td>
</tr>
<tr>
<td>Valve 8</td>
<td>2.05E-03</td>
<td>9.04E-03</td>
<td>34.00</td>
<td>1.00E-01</td>
<td>1.00E-01</td>
</tr>
<tr>
<td>Valve 9</td>
<td>2.05E-03</td>
<td>9.04E-03</td>
<td>34.00</td>
<td>1.00E-01</td>
<td>1.00E-01</td>
</tr>
</tbody>
</table>
Using Leading and Lagging Indicators

- With VIMS, operators would have been pushed to giving valve 1 more attention through the health check assessment following VIMS Reliability Engineering Process. There would have been possible triggers that would have been hit to alert the operator of potential issues.

- For valve 1, an RCA (circa 7,000.00 USD) which would have recommended changes to valve housing and purchase of spare actuator (circa 30,000 USD).
Frequently Asked Questions (FAQs)
Frequently Asked Questions

• Difference between Valve-IMS and CMMS?
 • A computerised maintenance management system like Agresso, SAP, Maximo etc. focuses on generating PMs and inspection activities and planning. Valve-IMS focus on integrating the operational activities with reliability and engineering decision making of an organisation.

• How does Valve-IMS integrate with CMMS?
 • Integration with CMMS is done through API of Valve-IMS speaking with APIs of the CMMS, e.g. Maximo through Maximo Integration Framework (MIF), SAP through creation of a Valve-IMS user which feeds and seeks information with SAP system, Engica / Valuekeep / Agresso / etc. through direct API communications.

• Can company have their risk assessment table in Valve-IMS?
 • Yes, the risk matrix can be 4x4 or 100 x 100 based on the organisation’s risk process

• Can company modify the risk logic to reflect the specific company's process in Valve-IMS?
 • Yes, specific algorithms can be created to support the specific requirements of a client.

• Does a deferral under Activity Manager on Valve-IMS reflect on respective CMMS?
 • If the system is integrated with the CMMS, deferrals on Valve-IMS will be reflected on CMMS

• Does completing an inspection on Valve-IMS reflect on respective CMMS?
 • If the system is integrated with the CMMS, inspections, IVBs, etc. on Valve-IMS will be reflected on CMMS

• Is there any user restriction on Valve-IMS?
 • Yes, user restrictions can be created based on client requirement

• Is there a limit to the number of users possible on Valve-IMS?
 • There is no limit to the number of users

• Can the handheld device be used in all zone areas?
 • Yes, the provided tablets are ATEX rated to the appropriate zone.

• Can reports be emailed and printed from Valve-IMS?
 • Yes

• Is the data reporting process traceable on Valve-IMS and does Valve-IMS keep record of changes to a valve or asset characteristics?
 • Yes, changes of any type on Valve-IMS is tracked, and the date, time and user recorded. This allows for accountability and traceability.

• Can Valve-IMS be shared with 3rd party?
 • Yes, 3rd parties can be given access to specific modules and specific rights. E.g. read only, ability to view trends only, ability to view dashboard only, etc.

• Can 3rd party be given limited access to input information for a specific valve or asset without seeing the other assets of the company?
 • Yes, 3rd party access can be granted, where an operator outside the company or within a company is given input, review or technical authority level access only.